Site characterization: Example from SED network

Donat Fäh,
Valerio Poggi, Clotaire Michel, Manuel Hobiger, Ben Edwards,
Jan Burjanek, Stefano Marano, Philipp Kästli,
Walter Imperator, Carlo Cauzzi

Swiss Seismological Service
ETH Zürich

Orfeus Meeting Bucharest 2015
Local seismic hazard assessment requires our understanding of site-specific ground motion (before a strong earthquake):

1) Interpretation of earthquake recordings:
 - Housing information and installation details (free-field!)
 - Site-specific amplification / deamplification
 - Issue of 1D, 2D or 3D resonances
 - Presence of edge-generated surface waves
 - Presence of focusing/defocusing effects
 - Possibility of non-linear (soil-) effects

2) Characterization of sites of the seismic stations
 - Geology, topography, rock interface at depth,..
 - Geophysical measurements (fo from H/V, S-wave profiles,)
 - Site-amplification from spectral modelling of ground motion
 - Geotechnical measurements (SPT, CPT,)
Site Characterization

Evolving procedures at the Swiss Seismological Service
done for most of the new permanent seismic stations since 2009

2009: 27 sites (mostly rock sites) in the Pegasos refinement project
2013: 30 sites of the Swiss strong motion network renewal – Phase 1
2014: 16 sites from NagraNet project and Basel mitigation project
2019: 70 sites of the Swiss strong motion network renewal – Phase 2
Array methods

Target from 3C array measurements:
- Rayleigh waves dispersion curves
- Rayleigh waves ellipticity and fo
- Love waves dispersion curves
- Identification of 2D resonances from related polarization features

Methods and their improvement: no method works in all situations
- HRBF: Including interpretation of the horizontal components with directional decomposition
- Rayleigh wave ellipticity combining vertical and horizontal information from dispersion curves
- SPAC (SPatial Auto-Correlation) and M-SPAC
- Probabilistic graphical models and waveform decomposition
- Directional polarisation analysis
- Frequency domain decomposition to analyse 2D resonances
- Combination of the ambient vibration methods with active methods
- Borehole measurements performed exceptionally
- Verification of inverted Vs profiles with measured amplification
High-Resolution Beam Forming

- Ambient vibration array tool (1D interpretation): Rayleigh waves and Love waves dispersion curves, ellipticity
- Retrieving f_0 and ellipticity from 3-C analysis

Poggi and Fäh (2010)
Anatomy

1) In case of a large velocity contrast:
 Shape is related to the ellipticity of the fundamental mode Rayleigh wave.

2) If the thickness of sediments is known, we can estimate an S-velocity profile.

Remove the SH-wave part............

Peak is at fundamental frequency \(f_0 = \frac{v_s}{4h} \) of the sediments (Considerable Uncertainty)
SPAC and M-SPAC

SPAC Layout:
• Large number of stations on ring around central station (Aki, 1957)
• Calculation of the correlation function between central station and all ring stations results in a Bessel function.

M-SPAC Layout:
• Station pairs with similar distances are grouped on rings (Bettig et al., 2001).
• Can also analyse horizontal components (Köhler et al., 2007)

Hobiger et al. (2015)
Probabilistic graphical models

- Treat all stations and all components in the same framework
- Full decomposition of the wavefields
- Detect and characterize small signals in ambient vibrations
- Ellipticity is obtained at high resolution with sense of rotation

<table>
<thead>
<tr>
<th>Possible models</th>
<th>Added models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rayleigh</td>
<td>Love</td>
</tr>
<tr>
<td>Love</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Marano et al. (2012)
Probabilistic graphical models

Rayleigh wave dispersion curves

Rayleigh wave ellipticity angle

Site Yverdon

Marano et al. (2012)
• What is the minimum number of sensors and the optimum configuration?
• How to optimize array configuration in urban environment.

Marano et al. (2013)
Active methods

- Application of active methods (MASW, S-seismic) in complex topography;
- However, passive methods resolve larger depths than active methods;
- Body-wave methods can resolve more details than surface wave methods;
- However, we prefer average velocity profiles (surface wave techniques);
- Combination of active and passive methods allows to
 → extend dispersion curves to high frequencies and
 → to constrain Vs at the surface.
Directional polarisation

Identification of instable rock-slopes

Burjanek et al. (2013)
Directional polarisation

Identification of 2D resonances in alpine valleys
Directional polarisation

Identification of 2D resonances in alpine valleys

SSR (Standard Spectral Ratios)

Roten et al., 2006

Modes shapes (Ermert et al., 2013)
Frequency Domain Decomposition

Martigny

Norm. mode shape

Bedrock depth (m)

Roten et al., 2006
Ground motion analysis

Using the Swiss stochastic ground motion prediction model for the reference rock in the Swiss network (Edwards et al., 2013)

\[
\Omega_{ij}(f, r) = \omega \cdot \Omega_i \cdot \frac{f_c^\gamma}{(f_c^\gamma + f^\gamma)} \cdot S_{ij}(r) \cdot \exp(-\pi \cdot f^{1-\alpha} \cdot t_{ij}^*) \cdot A_j(f) \cdot \exp(-\pi \cdot f^{1-\alpha} \cdot K_j)
\]

Source Spectrum
Path Effects
Site Effects

Soil/rock in the upper layers:

- Amplification \(A(f) \)
- Damping (Kappa)

Incoming waves

Amplitude
Frequency
Ground motion analysis

Using the Swiss stochastic ground motion prediction model for the reference rock in the Swiss network (Edwards et al., 2013)

Automatic determination of **site-specific empirical amplification** for all stations relative to the reference bedrock profile.
1) Verification of the measured velocity profiles
2) Derive features of the stations by comparison with computed 1D SH-amplification from measured velocity profile

Simple 1D response at Lausanne EPFL site

Edge-generated surface waves at Lucerne site

Vs30~200 m/s
Classification of seismic stations

Site amplification from spectral modelling

Edges generated surface waves

Yes Unclear No

Resonances

2D/3D

1D

Michel et al. (2014)
Resources

- File structure for all H/V and Vs measurements
- Database including selected information
- Access via specific web-interfaces (e.g. for seismic stations)
- Reports accessible via web
CPT measurements

- Requires particular expertise – SED is still in a testing phase
- From CPT to modeling of non-linear soil response (under development)
- Comparison with geotechnical laboratory testing (pending)
- Database structure yet undefined
Conclusions

1) Site characterization is highly recommended for all (new) seismic stations:
 - The step needed for improved seismic hazard products
 - Needs specific expertise to perform reliable Vs measurements
 - Field techniques are developing and still improving
 - Important issue: data storage and access

2) Site characterization will allow that:
 - Sites can be systematically classified beyond Vs30
 - Site properties can be derived and combined with site amplification: A(f), Kappa
 - Ground motion can be referenced to a Vs-profile, decreasing epistemic uncertainties in seismic hazard products

PSHA for defined rock profile